Thursday, May 26, 2011

Light For Your Room: Incandescent Lamp Bulb

The incandescent light bulb, incandescent lamp or incandescent light globe makes light by heating a metal filament wire to a high temperature until it glows. The hot filament is protected from air by a glass bulb that is filled with inert gas or evacuated. In a halogen lamp, a chemical process that returns metal to the filament prevents its evaporation. The light bulb is supplied with electrical current by feed-through terminals or wires embedded in the glass. Most bulbs are used in a socket (a housing giving mechanical support to the bulb, keeping its terminals in contact with the supply current terminals).

Incandescent bulbs are produced in a wide range of sizes, light output, and voltage ratings, from 1.5 volts to about 300 volts. They require no external regulating equipment and have a low manufacturing cost and work equally well on either alternating current or direct current. As a result, the incandescent lamp is widely used in household and commercial lighting, for portable lighting such as table lamps, car headlamps, and flashlights, and for decorative and advertising lighting.

Some applications of the incandescent bulb use the heat generated by the filament, such as incubators, brooding boxes for poultry, heat lights for reptile tanks, infrared heating for industrial heating and drying processes. In cold weather, the heat produced by incandescent lamps is a benefit as it contributes to building heating, but in hot climates this waste heat increases the energy required by air conditioning systems.

Incandescent light bulbs are gradually being replaced in many applications by other types of electric lights, such as fluorescent lamps, compact fluorescent lamps, cold cathode fluorescent lamps (CCFL), high-intensity discharge lamps, and light-emitting diodes (LEDs). These newer technologies improve the ratio of visible light to heat generation. Some jurisdictions, such as the European Union, are in the process of phasing out the use of incandescent light bulbs in favor of more energy-efficient lighting. In the United States, federal law has scheduled the most common incandescent light bulbs to be phased out by 2014, to be replaced with more energy-efficient light bulbs. Approximately 90% of the power consumed by an incandescent light bulb is emitted as heat, rather than as visible light.

The effectiveness of an electric lighting source is determined by two factors, the relative visibility of electromagnetic radiation, and the rate at which the source converts electric power into electromagnetic radiation.

Luminous efficacy of a light source is a ratio of the visible light energy emitted (the luminous flux) to the total power input to the lamp. Visible light is measured in lumens, a unit which is defined in part by the differing sensitivity of the human eye to different wavelengths of light. Not all wavelengths of visible electromagnetic energy are equally effective at stimulating the human eye; the luminous efficacy of radiant energy is a measure of how well the distribution of energy matches the perception of the eye. The maximum efficacy possible is 683 lm/W for monochromatic green light at 555 nanometres wavelength, the peak sensitivity of the human eye. For white light, the maximum luminous efficacy is around 240 lumens per watt, but the exact value is not unique because the human eye can perceive many different mixtures of visible light as "white".

Learn Mandarin, Kanji, and Hangul here
Free Chinese/Mandarin Resources
What is Hiragana, Katakana, or Kanji?
Guide to Korea's Hangul System

No comments:

Post a Comment